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Blunt-body impact on a compressible liquid surface 
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Dcpartment of Mechanics, Royal Institute of Technology, 5-100 44 Stockholm, Sweden 

(Received 3 January 1992 and in revised form 6 May 1992) 

In this paper we are concerned with the unsteady plane liquid motion due to the 
penetration of a blunt undeformable contour through the free surface. Initially the 
liquid is at rest, and the contour touches its free surface at a single point. At 
the initial stage of the process the liquid motion is described within the framework of 
the acoustic approximation. It is known that, just behind the shock front which is 
generated under the impact, the liquid motion does not depend on the presence of the 
free surface for all time. The pressure distribution and the velocities of liquid 
particles inside this region are calculated analytically for an arbitrary contour. It is 
shown that liquid motion close to the contact points just before the shock wave 
escapes onto the free surface is self-similar; the singularity of the pressure is 
analysed. The focusing of the shock wave generated by the impact of a body with a 
shallow depression in the front surface is discussed. 

1. Introduction 
In this paper we consider the problem of the plane unsteady flow arising when a 

blunt contour enters an ideal weakly compressible liquid through the free surface. 
Until some time, which is taken as the initial one (t = 0 ) ,  the liquid occupies a lower 
half-plane and is at rest. The line y = 0 corresponds to the undisturbed position of the 
free liquid surface. Initially the body touches this line at a single point, which is 
taken as the origin of the Cartesian coordinate system. Then the body starts to 
penetrate the liquid vertically with a constant velocity V (figure 1). The topology of 
the liquid boundary changes a t  the initial moment : a previously absent component 
of the liquid boundary adjacent to the solid body appears. The presence of the 
contact points between the free surface and the solid one is the main characteristic 
of the liquid-solid impact problem. The positions of these point must be determined 
together with the solution of the problem. 

We shall determine the liquid flow, the elevation of the free surface, the position 
of the contact points and the pressure distribution under the following assumptions : 
(i) the body is solid, undeformable, smooth, and symmetrical with respect to the y- 
axis; (ii) the radius of curvature at the contour top differs from zero; (iii) the fluid 
is ideal and compressible, and its motion is plane and symmetrical with respect to the 
y-axis ; (iv) the Mach number M = V/co ,  where co is the sound velocity in the fluid at 
rest, is much less than unity; (v) external mass forces and surface tension are absent. 
The symmetrical case is considered for simplicity of notation only. All results, except 
some special cases, are valid for an arbitrary contour. 

A detailed review of the subject has been given by Lesser & Field (1983), who 
consider the problem of a drop impact onto a solid surface. The water-entry problem 
is included in Korobkin & Pukhnachov’s (1988) review but the main part of that 
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FIGURE I .  Impact by a blunt contour on a liquid surface. (a) Initially, liquid is at rest and a body 
touches its free surface at  the single point. ( b )  The flow pattern a t  the subsonic stage: SW, shock 
wave; RW, wave produced by the shock reflection a t  the free surface; D(t) ,  region under 
consideration in the present paper. 

review is devoted to  the incompressible liquid model. However, i t  can be shown that 
for the initial stage of the solid-liquid impact, when the size of the contact region is 
small in comparison with the characteristic linear size of the process geometry, the 
problem can be approximately transformed to the water-entry problem, which has 
a simpler geometry than the original one. 

Let the initial position of the free surface close to the first contact point be given 
by the equation y = h,(x), and the position of the solid surface for all time by the 
equation y =f(x) - Vt. The functions hi(x),f(x) are assumed to be smooth and 
f(0) = h(0) = O,f’(O) = h’(0) = 0. Then the transformation y1 = y -h (x ) ,  x1 = x maps 
the original position of the free surface onto the horizontal line y1 = 0, but the 
position of the solid surface is now described by the equation y1 = If(.,) - h ( z l ) ]  - Vt. 
It can be verified that this mapping does not change the equations of motion, 
boundary and initial conditions to leading order with respect to the contact spot size. 
This is why the present results are valid not only for the problem under consideration 
but also for the more general liquid-solid impact problems. 

It is well known (see Bowden & Field 1964) that  within the framework of the 
above-mentioned assumptions there is an instant T such that for 0 < t < T the free 
surface is undisturbed. This stage of the impact process may be called supersonic. I ts  
presence is connected with the fact that the expansion velocity of the contact spot 
for small times is greater than the local sound velocity. This result follows from 
purely geometrical considerations and it fails within the framework of a more 
complete model which takes into account viscosity of the liquid. Nevertheless, for the 
model of a weakly viscous, compressible fluid a similar initial stage, during which the 
disturbances of the free surface are localized close to the solid contour, can also be 
indicated. For large Reynolds numbers the size of this region is inversely proportional 
to Re. 
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When the Mach number is small, an approximate model describing the ideal liquid 
flow caused by the entry of a parabolic contour at the supersonic stage and just after 
it has been constructed by Korobkin (1990) using Lagrangian approach. This 
approach to the water-entry problem was first used by Pukhnachov (1979). The 
generalization of the model to an arbitrary contour, with T >  0 as the only 
limitation, is not difficult. It is clear, that at  the initial stage, when t /T  = O ( l ) ,  the 
same approximate model can be used for an arbitrary blunt contour. Namely, one 
needs to find the velocity potential #(x, y, t )  that satisfies the wave equation in the 
lower half-plane (y < 0 ) ,  and the mixed boundary conditions on the line y = 0, and 
which is identically equal to zero when t < 0. The positions of the points which divide 
the boundary between the contact spot and the free surface (contact points) are 
known at the supersonic stage and are determined by a transcendental equation 
when t > T (Korobkin 1990). 

For all times there is a region D ( t )  in the half-plane y < 0 (figure 1 b )  where the 
liquid motion does not depend on the presence of the free surface and is the same as 
in the problem of a body emerging from an infinite plate. The geometry of this region, 
the pressure distribution and the velocity field inside it are under investigation. For 
the supersonic stage this analysis has been given by Rochester (1979) for the similar 
problem of cylindrical drop impact onto a rigid plane. Unfortunately his results are 
yet unpublished. The present paper may be considered as the generalization of 
Rochester’s results to an arbitrary geometry of the blunt contour and to all times. 
This generalization is not trivial and allows the possibility of analysing some very 
interesting effects caused by the special geometry of the entering body. The shape of 
the body can be chosen in such a way that the focusing of the shock wave under a 
solid-liquid impact will be observed. The phenomenon can be utilized for kidney 
stone disintegration, and the present approach is expected to be very helpful for its 
optimization. 

The main characteristics of the evolution of the shock wave under solid-liquid 
impact and pressure distribution along the shock front can be described within the 
framework of geometrical acoustic theory (see Lesser 1981). However, to construct 
a general picture of the process it is desirable to have more detailed information 
about the liquid motion under the impact than we can obtain using this theory. 
This is why the acoustic theory, which is more general than the geometrical acoustic 
one is used in the present paper. The acoustic theory allows us to calculate 
analytically the velocities of liquid particles and the pressure field everywhere and to 
analyse their characteristics. 

2. Formulation of the problem 
Non-dimensional variables are used below. They are chosen so that after scaling 

both the sound velocity in the liquid at  rest and the impact velocity are equal to 
unity in the new variables. The notation of $1 is unchanged. The boundary-value 
problem for the velocity potential #(x, y, t )  written in Eulerian variables is 
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FIGURE 2. Geometry of the integration domain. 

Here the interval -a(t)  < x < a(t)  corresponds to the wetted part of the entering 
contour. The function a(t)  is assumed to be known. A method for its calculation has 
been proposed by Korobkin (1990). I n  our case a(0) = 0, a’(t) > 1 a t  the supersonic 
stage (0 < t < T ) ,  a’(t) < 1 at the subsonic stage ( t  > T), and a’(T) = 1 at the moment 
of the shock escape onto the free surface. The contour position is given in non- 
dimensional variables by the equation y = cc(M) (f(x) - t ) ,  where the function a(M) 
tends to zero when M+O. At the supersonic stage f [ a ( t ) ]  = t .  For example, for a 
parabolic contourf(x) = +x2 and i t  can easily be found that a(t)  = (2t)i ,  T = 1 2’ 

The velocity potential is calculated in accordance with the well-known formula 

where the integration domain a(x, y, t )  on the plane 6,7 is bounded below by the 
curve 

r, 17 =f(<,, ltl < a*> 

7 = IEl+T--a*,IEl >a*,  

r2 : 7 = t - [ (x - ‘p + y2]i =:F( c,x, y, t )  . 

a, = a(T) ,  and above by the curve 

(2) 

The coordinate of the left-hand intersection point of the curves r, and r2 is denoted 
by a, and that of the right-hand point by a2 (see figure 2). It is clear that a,, a2 are 
functions of the variables x, y, t .  In  figure 2 the curve r3 is the mirror image of r2 with 
respect to the line T = t and the curve r, is defined by the equation 7 = f([). For the 
curves r, and r3 the &coordinate of the left-hand intersection point is denoted by 
a,, and that of the right-hand intersection point by a3. 

In (1) the function +Jt, 0 ,7 )  in the general case is unknown when 7 > T.  However 
for the interval 0 < 7 < T 

q&(5,0,7) = - 1,161 < 44, +&, 077) = 0,lt.l > 4 7 ) .  

Therefore the velocity potential and its first derivatives are given by quadratures in 
some region of the motion domain, where the inequalities -a, < a, < a, < a, are 
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satisfied. It will be shown that for every pair (x, t )  an interval of the vertical variable 
y can be found, where the above-mentioned inequalities are valid. 

Let some point A on the plane f ,  7 with coordinates z, t ( x  > 0) (see figure 2) be 
fixed. Let the point B lie a t  the top of the hyperbola r2 so that AB = - y. In  general 
the slope of the curve r2 is 

It is obvious, that this value is less than or equal to unity and that equality occurs 
when y = 0. We then begin to increase y, starting from zero. The hyperbola r2 will 
be lowered and flattened. For some value y = &(x, t )  we will have a, > -a*, u2 = a,. 
When y < Y,(x, t )  both intersection points lie below the line 7 = T and, hence, for such 
values of the depth the fluid motion does not depend on the presence of the free 
surface. On further increasing the depth y the intersection points of the curves r,, r2 
continue to move together and for some y = Y(z, t )  they coalesce. The value of f [  at 
which this happens will be denoted by s(x, t ) .  Therefore, for t > 0 a region D(t) of the 
(z,y)-plane can be distinguished, where the presence of the free surface is not 
important. When y < Y(x, t )  the liquid is at  rest, and so one can say that the equation 
y = Y(x, t )  determines the disturbance front or the shock wave front. Behind this 
front, where y = Y(x, t )+O,  the pressure is, in the general case, not zero. 

3. The geometry of the region D(t)  

the help of (2), leads to the equation 
The function q ( x ,  t )  for x > 0 is determinated by the condition a2 = a, which, with 

( ~ - a , ) ~ + q ( ~ , t )  = (t-T)'. (3) 

When t < Ti t  is necessary to take = 0. Hence, the upper boundary of the regionD(t) 
consists of the circular arc with radius ( t -  T), and centre at  the point (a*, 0 ) ,  and the 
part of the solid boundary 0 < x < a(t)  when 0 < t < T and 0 < x < (a* + T- t )+  
when t > T. The notation g+ = g when g > 0 and g, = 0 when g < 0 is used. 

When 6 = s(x, t )  the determination of the function Y(x,t) yields the following 
equations to be satisfied: 

f(s) = F(s ,  5, Y(., t ) ,  t ) ,  ] 

1 q s ,  = - ( s , x ,  dF Y(x,t),t). 

d5 dE 

(4) 

The first one describes the intersection of the curves r, and r,, the second one their 
smooth touching at this point. The equations determine the position of the shock 
front in the parametrical form 

where s now plays the role of the parameter. It is clear that the same result could be 
obtained using Huygen's principle as was done by Lesser (1981). Most important 
here are the inequalities for the parameter -a(t) < s < a(t) when 0 < t < T and 
-a* < s < a ,  when t > T. They show that the form of the shock front for all time 
depends only on the contour geometry in the small vicinity of the apex. 

The boundaries of the region D(t)  are determined by (3) and (5). For the 
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symmetrical case, the vertical width of the region is greatest when x = 0, and during 
the supersonic stage it increases with time from zero to T .  For T < t < T+a, it 
continues to increase and achieves the maximum value a, + T when t = a, + T .  Then 
it decreases and tends to T when t+m. 

The shock front position close to the right-hand contact point just before the end 
of the supersonic stage is now analysed. It is convenient to use ‘internal’ variables 
A, p, 7 such that 

x = a(t)+h,  t = T+7 ,  y = p, 
where 

h < 0 ,  p < o ,  7 < 0 ,  h2+p2+726 1 .  

Note that the dimensions of this area are unknown and have to be determined 
together with the construction of the asymptotic formula. For this we will use the 
function Y(x, t )  in the parametrical form (4, where we must put s = a ( t ) + K ,  where 
K is a new parameter such that I K I  4 1, K < 0. Taking into account the equality 
f”(a,) = --a”(!!’-0) and the notation fi = f”(a,) we get 

t-f(s) = T + T - ~ ( u ( T + T ) + K )  = - ~ [ 1  +f2(7+g~)]+O(1713+l~172), 

f’(s) = 1 + f 2 ( 7 + K ) + o ( T 2 + I K 7 1 ) .  

It is clear that in the general case one has to take K = O(7).  Then to leading order 
when 171 + 0 the system ( 5 )  gives 

Y = - ( -7 ) fk [2 f2 ( l  + k ) $ +  ... ,I 
h = - 7 2 f 2 k ( 2 + % k ) + . . . ;  J 

k = K / T  is the new parameter, k > 0. Equations (6) show that the shock front 
evolution has a self-similar character in the region under consideration. Namely, 
there is some function L ( x )  such that the Y(x, t )  can be written in the form 

when ~ + 0 ,  h = O(?). 

to the free surface (see figure l ) ,  that is, where 

Y = (-7)~L(h/72)(1+0(1)) 

Let us consider the geometry of the regionD(t) close to the point S where it is joined 

x = ~ , - T + t + h ,  y = p ,  A < 0, p < 0, A2+p2 4 1 .  

We will seek the positions of its upper boundary (expansion wave front) and its lower 
boundary (shock wave front) in the forms A = h,(p, t )  and h = h,(p,t) respectively. 
Then (3) is reduced to 

and, when p -+ 0, 
h ~ + 2 ( t - T ) h , + p 2  = 0, 

-he = ~ p2 + p4 +O(p6). 
2(t-T)  8(t-T)3 (7)  

To obtain the related expression for the shock front, we use the parameter K such that 
s = a, + K ,  where K < 0, I K I  4 1. Equation (5a )  leads to the following asymptotic 
expansion : 

its substitution into ( 5 b )  gives the final formula 

~ ( p ,  t )  = A , ( t ) p 2 + A 2 ( t ) ~ ‘ + O ( p 6 ) ;  

1 
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Thus only the fourth derivatives of these curves differ. The higher order of the 
touching of the expansion and shock fronts indicates that, inside this region, the 
pressure gradient can be unbounded and, hence, the assumptions of the acoustic 
approximation fail. It may be expected that the fine structure of the liquid flow in 
this region can be described using the 'short wave ' approximation proposed by 
Ryzhov & Christianovich (1958) for compressible flows with small, but abrupt, 
variations of the pressure. In any case, at  some distance, which is large with respect 
to the size of the vicinity of the point S, the geometry of the region D(t)  is determined 
by the relations (7) and (8), and the flow is close to that calculated within the 
framework of the acoustic approximation. 

4. The pressure distribution inside the region D(t)  

written as 
If the point with coordinates x ,  y at the moment t lies inside D(t)  then (1)  can be 

The inner integral is calculated analytically. It is equal to zero when 5 = a, or a2 since 
f(5) = F(5)  for those values (figure 2). This is why under the differentiation of ( 1 )  with 
respect to the variables x ,  y, t the differentiation and the integration with respect to 
6 are interchangeable. The final formula is 

where a,, a2 are functions which are determined geometrically and depend on x ,  y, t .  
The integrand is an elementary acoustic source which is located at the point on the 
liquid boundary lying a distance 6 from the point of first contact and which acts at  
the instant f(5). This is the instant when the liquid particle touches the solid contour 
for the first time. One may say that the pressure field in the region D(t)  is formed by 
the elementary 'explosions' of the liquid particles at  the instant of their first contact 
with the solid body. The same arguments have been used by Lesser (1981) for the 
construction of the pressure distribution along a shock front from a physical point 
of view within the framework of geometrical acoustics. The present analysis 
generalizes Lesser's result to the whole region behind the shock front. 

For a parabolic contour f(5) = it2 the expression under the radical sign in (9) is a 
polynomial of the fourth degree with respect to 5 with coefficients depending on 
x, y , t .  We denote this polynomial by P4(f ) .  Clearly P4(a,) = 0, j = 0 , 1 , 2 , 3  and 
P4(5) > 0 when a, < 5 < a2. The formula (9) now takes the form 

15 FLM 244 
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Thus, to find the pressure field in the region D(t )  for the parabolic contour case we 
have to find aj(x, y, t )  (j = 0, 1,2,3) - this is a geometrical problem - and then to 
calculate the value of the function K(k) .  When 0 < t < T and y = 0, (10) coincides 
with that obtained by Rochester (1979) for the pressure distribution over the wetted 
part of a plane during the supersonic stage of a drop impact onto this plane. When 
t >  0 and y+Y(x,t)+O we have 

and hence 
a,-u,+O, k+O,  K(k)+ ,  

p ( x ,  Y(Z, t )  + 0, t )  = 2[(a3 - s )  (S - uo)]-i> 

where the function s(x ,  t )  was determined above. This formula describes the pressure 
distribution along the back of the shock front for an arbitrary time. 

Let us construct a similar formula for an arbitrary case. We put y = Y(x, t )  + A  in 
(9) and consider the limit of the right-hand side when A++O. A new function 
g(E,x, y, t )  is introduced by the relation 

g(&x,y,t)  ( 5 - 4  (a,-5) = ( t - f ( m 2 - ( - 8 2 - Y 2 .  

g@j, x,y, t )  = 2[-aj--f’(aj) (t-f(aj))l/(~,--al), 

(11)  

(12) 

The function is positive in the integration interval a, < 5 < a, and 

where j = 1,2. For some bounded function B(x ,  t ) ,  the exact form of which is not 
important, the following asymptotic expansions are valid when A 4 1 : 

a, = s - ~ ( x , t ) ~ : + ~ ( ~ ) ,  = s + B ( ~ , ~ ) A ~ + o ( A ) .  

The relations can be obtained using the conditions (4) and double Talor series of the 
left-hand sides of the equations 

G(aj ,  t ,  x, A )  = 0 

close to the points aj = s(x,t), A = 0, where 

Then 
G(aj, t , ~ ,  A )  = ( t - f ( a j ) ) 2 - ( Z - a j ) 2 - ( Y ( x , t ) + A ) 2 .  

and we obtain the above-mentioned asymptotic expansions. Substitution of those 
asymptotic expansions into (12) yields the final relation 

lim g(aj, x, y, t )  = 1 - Cf’(8)l2 +f”(s) ( t - f (s)) .  
A+O 

Taking this analysis into account we can rewrite (9) when Id1 < 1 as 

which gives 

where p,, (s(x ,  t ) ,  t )  = p(x ,  Y(x, t )  +0,  t ) .  Equation (13) describes the pressure dis- 

psw(s, t )  = [I- V’(dI2+ (t-f(s))f”(s)l-4 (13) 



Blunt-body impact on  a compressible liquid surface 445 

tribution along the back of the shock wave and has to be considered together with 
the system (5 ) .  For example, for the parabolic contour whenf(6) = +E2 we have 

p, ,  = [ l + t - p ] - t ,  y = - ( t - ; s 2 ) ( 1 - S 2 ) t ,  z = s ( l + t - y ) ,  

p,,(O, t )  = [ 1 + q70)]4. 

where Is1 < (2t)t when 0 < t < + and Is1 < 1 when t > 4. For an arbitrary symmetrical 
contour at  the shock-front top (x = 0) ,  (13) gives 

This means that the parabolic contour case is a boundary case. Whenf(s) = O ( X ~ + ~ ) ) ,  
x+ 0, k > 0, i.e. when the contour is ‘more blunt’ than a parabola, thenf”(0) = 0 and 
the pressure at  the shock top is equal to the ‘hydraulic hammer ’ pressure for all time. 
When f(z) = O(X’+~) ,  z+O, 0 < k < 1, i.e. when the contour is ‘less blunt’ than a 
parabola, thenf”(0) = co and the pressure jump at the top of the shock wave is equal 
to zero. 

At  the contact point during the supersonic stage when f(s) = t ,  (13) gives 

or in a more convenient form 
p,(s) = .,/(.:- l) i ,  

where w, is the velocity of the contact point, p,(s) = p,,(s,f(s)). Equation (14) shows 
that the pressure very close to the contact points is unbounded when w, 4 1 + 0. 

Let us consider the pressure field in this region in detail. It is convenient to use the 
‘ internal ’ variables A, p, 7 determinated by the equations 

z = a(t)+h,  y = p, t = T+7.  

When A2 +p2 + 72 -+ 0 the three intersection points of the curves To, r2, r3 merge (see 
figure 2), that is 

To find the asymptotics of aj(z ,  y, t )  (j = 1,2,3)  inside the region, the equation 

a, -+ a* -0, a2 +a* -0, a3 -+ a, + 0. 

(t-f(aj))”((2-aj)2-y2 = 0 (15) 

has to be rewritten using the new ‘internal’ variables, and the new unknown function 
a(h ,p ,  7 )  = aj -a( t ) ,  la1 4 1 must be introduced. On decomposing the left-hand side of 
(15) in power series firstly with respect to a and then with respect to 7 ,  while 
neglecting terms of the higher order since la1 < 1,171 4 1, we find 

t - f (a j )+z-a j  = t -f[a(t)+a]+h-a 

= t - f [a( t ) ]  -f’[a(t)] a+ A - a+ O(a2)  = - 2 ~ +  h + O(a2 + 1 ~ ~ 1 ) ~  

t - f (a j )  -z+a, = [i -f”a(t)ll +A + 0 ( ~ 3 )  

= -f2 a(7+4a) - A  + O(a2[lal+ 1711). 
The resulting equation has to be at  least cubic. This is why we need to assume 

a/7 N 1, A/72 N 1, p / (  -7): - 1. 

Then (15) takes the form 

15-2 
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where k(h,  p, r )  = ~ ( h ,  p, T ) / T .  It can be shown that inside the disturbed part of the 
liquid domain bounded below by the shock front this cubic equation has three real 
roots: k, > k, > 0 > k,. Then uj = a ( t ) + k i ( h / 7 , , ~ / ( - 7 ) 6 ) 7 + 0 ( r 2 ) , j  = 1 , 2 , 3  and the 
asymptotics of the pressure when r + 0 is 

or in more compact form 

The pressure depends on the contour form via the acceleration of the contact point 
at  the escape moment, that is vk(T). Equation (16) is valid for an arbitrary non- 
pointed contour with the only restriction that vk(T) is not equal to zero. 

5 The velocity field in the region D(t)  

section : 
The velocity vector u = V$ can be found in the same manner as in the previous 

To obtain the liquid velocity on the shock front it is necessary to consider (17)  when 
y+Y(z,t)+O, a,+s(x,t)-0, a,-ts(z,t)+O. Then for all time 

u(x, Y(x;t)+O;t) = p,,(s,t)n(s), (18) 

where n is the unit external normal to the shock front. As expected, the velocity has 
the magnitude of the pressure jump and its tangential component is continuous on 
the shock front. 

To find the velocity field close to the contact points just before the shock escape 
onto the free surface we use the same 'internal' variables as in the previous section. 
But 

when 7 + 0. Therefore the main terms of the asymptotic expansions of the pressure 
and the horizontal velocity coincide. For the vertical velocity component it is 
convenient to rewrite (17)  in the form 

1 YP -f(E) + [ g ( O  (6- a,) (a, - ~)1"]-' dE 

The relation ( 1 1 )  shows that the expression in the curly brackets is close to a(t)-E 
when r+O. Reasoning in the same way as when deriving (16) we obtain 

where the functions ki(h/rz,p/( -r)g),j = 1 , 2 , 3  have been determined above. 
The final result can be presented as follows. In  the region under consideration the 



Blunt-body impact on a compressible liquid surface 447 

liquid motion and the pressure distribution are approximately self-similar and are 
described by the formulae 

U(X,Y,t)  = ( 4 - 9 7  (; -,- (3+4 
p(z,y,t) = u(x ,y , t )+. . .  3 I 

where the functions U ,  V are bounded and continuous in the flow domain. 

6. Comparison with Lesser’s results 
The impact of a liquid drop onto both a rigid and an elastic plane has been 

considered by Lesser (1981) for both the plane and the axisymmetric case. Using 
geometrical acoustic theory he gives the evolution of the shock front and the pressure 
distribution along it for the supersonic stage. In $ 1  it  was remarked that, for 
arbitrary geometry of both the body and the liquid volume at the initial contact 
moment with the only limitation that those surfaces are smooth, the impact problem 
is equivalent to the water-entry problem. It is evident that the shock front evolution 
in the acoustic theory and in the geometrical acoustic theory are the same, as both 
theories are based on Huygen’s principle. We want to show that the present results 
concerning the pressure distribution along the shock front agree with those of Lesser. 

Using the parametrical definition of the shock front position ( 5 )  it can be found 
that the unit external normal vector n a t  the front is given by 

n = If’(s) ,-(l-~(s)]2)f]  

and is independent of time. This means that if we fix a point (s,O) on the interval 
-a ,  < x < a,, y = 0 and take a ray starting from this point, the direction of which 
is given by the vector n(s) ,  then the ray will be perpendicular to the front at  the 
intersection point for all time (see figure 3). The distance along the ray from the 
initial point to the front is equal to t -  f(s) at the moment t. But f(s) coincides with 
the instant of time when the liquid particle, initially on the free surface at the 
distance s from the coordinate origin, reaches the solid surface of the entering 
contour. One may now say that along every ray, indicated by the parameter s, the 
shock front is displaced independently, with constant velocity which is equal to unity 
in the non-dimensional variables, and its motion starts a t  timef(s). This is one of the 
main assumptions in geometrical acoustic theory. The result is non-trivial because 
the shock wave is not free but forced by the contact point motion. 

Equation (18) shows that just after the shock front has passed through a liquid 
particle it attains a velocity directed along the ray which is equal to the pressure 
jump on the shock front. Taking (13)’ (14) into account we find 

where 

is the radius of curvature of the shock front at the contact point at the instant f(s). 
In this form the formula for the pressure jump coincides with Lesser’s, obtained 
within the framework of the geometrical acoustics for the drop impact problem. 

Lesser’s analysis is based on simple and clear physical reasoning, but the geometry 

R(s) = (1 - If’(s)l”)/f”(s) 
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FIQURE 3. Ray picture at instant t :  -, shock wave; ----, shock wave at the 
instantf(s); +, rays; lOAl = s, lABl = t-f(s). 

of the impact process that he considered is not the simplest one. In particular, the 
expression for the radius of curvature R(s)  was not given and numerical calculation 
was suggested. In the present formula (13) the pressure jump on the shock front 
depends on the body geometry in an explicit way. This is why we can now consider 
the propagation of the shock wave initiated by the impact in detail and analyse the 
characteristics caused by special geometries of the entering contour. 

7. The focusing of the shock wave initiated by impact 
The focusing of the shock wave under a solid-liquid impact was first observed by 

Dear & Field (1988). They used a gel piece with a shallow depression in the front 
surface and impacted it with a flat-fronted slider at 150 ms-’. High-speed 
photography shows that there is no point focusing and that is strong. 

In this section the process of the entry of a body with a depression at the top into 
a liquid is considered. At the initial moment the body touches the liquid surface at  
two points as shown in figure 4. The slope of the tangent to the contour between those 
points is small. In  dimensional variables it must be less than the Mach number. In 
this case the ‘internal’ part of the free surface will be at  rest for all time. Then the 
shock position and the pressure distribution along the back of the shock front are 
given by ( 5 ) ,  (13) which are valid not only for convex contours, like parabolas, but 
also for contours having parts with negative curvature, where R(s) < 0 for some 
values of the parameter s. It was shown in the previous section that the influence of 
the body geometry on the shock wave propagation can be analysed independently for 
every ray. Therefore we can first consider some simple contour forms and then 
construct a contour with given properties using those elementary ones. 

Inside the regionD(t) under consideration in this paper, If’(s)I is less than unity and 
sgn (R(s)) = sgn (f”(s)), and so 

in the expression under the radical in (13). Therefore for some fixed s such that 
f”(s) < 0 we can always find the instant tp(s) when this expression will be equal to 
zero. This is the focusing moment for this ray and we cannot continue our 
calculations along the ray within the framework of the linear acoustic theory. 

We have two curves on the plane ( s , t ) .  The first one is given by the equation 
t = f(s). It coincides with the form of the entering contour and indicates when a liquid 
particle, initially on the free surface at a distance s from the coordinate origin, meets 
the solid surface. The second one, 

1 - Lf’(S)]Z > 0, t - f ( s )  > 0 

t = t p ( 4  =f(s)- (1  -V’(s)IZ)/Y(~), (21) 
gives the focusing time for a fixed value of s. 
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FIGURE 4. Impact by a body with a shallow depression at the top. 
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FIGURE 5. Focusing of the shock wave under the entry of a body of the geometry shown in 
figure 4. (a) Focusing time (top curve) and first contact time. (a) Focusing points. 

These curves, for the function f(s) = t ( s 2  - 1)2, which is chosen only for simplicity of 
calculation, and which describes a contour with a depression at the top, can be seen 
in figure 5(a) .  The position of the focusing points for the given contour is shown in 
figure 5(b ) .  In the general case this curve is given in parametric form by 

which can be obtained by substitution of (21) into the system ( 5 ) .  For the geometry 
under consideration there are three special points (see figure 5b) .  These are the points 
where the tangent vector to the curve reverses direction. In  the vicinities of these 
points one expects the highest values of the pressure. 

The question is, can the form of the entering contour be chosen in such a way that 
both the focusing moments tn(s) and the focusing point positions z(s), y ( s )  are the 
same for all values of s ?  This question can be put in a simpler form if we limit 
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FIGURE 6. Double-focusing device. Schematic representation and notation : SW, position of the 
shock wave just before the focusing instant; FS, initial position of the free surface; HL, hyperbolic 
lid; S, stone. 

ourselves to the focusing moments. Then we need to find functionf(s) such that the 
right-hand side of (21) is constant. This condition leads to the ordinary nonlinear 
differential equation 

where t ,  now is a constant. The general solution of the equation is 

Pf -f(s)lf”(s) - If’(s)12 + 1 = 0, 

f(s) = t , - [ [ ( ~ + ~ ) ~ + h ~ ] ; ,  (23) 

where c ,h  are arbitrary constants. This is a hyperbola and the parameter h 
determines its shape. The second parameter c defines the position of the hyperbola 
apex and can be taken without loss of generality to be zero. Substitution of this 
function into (22) gives the very important result 

X ( S )  = 0, ~ ( 8 )  = - h. 

We can now say that the only contour form which makes the shock wave focus under 
impact a t  a single point and a t  the same instant is the hyperbola (23). In  non- 
dimensional variables h is the distance of the focus from the free surface, t, is the 
focusing moment, h < t,. It can be expected that the circular hyperboloid will play 
the same role in the three-dimensional case. 

For some piece of the hyperbola (23) the form of the shock front which is generated 
by the entry of this piece into the liquid is the circle segment 

(y+h)’+X2 = ( t f - t ) ’ ;  

it can easily be found by substitution of (23) into (22). The pressure jump on the 
shock front ph($ , t )  for the entry of the hyperbola, up to the focusing moment, 
0 < t < t,, is 

where x =  (t,--t)cos@, y = -h+(t,-t)sin@. 

For any geometry of the hyperbola the jump tends to infinity when qi+O and 
$+ 7c. But those values can be reached only for the whole hyperbola. I n  reality there 
always is some finite piece of it,  as shown in the focusing device scheme (see figure 
6). In  this case 

i7c-e < 4 < i R + e ,  
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FIGURE 7 .  Sketch of the loads acting on a stone under the focusing of the shock waves 
generated (a )  by the piezoelectrical device and ( b )  by the present one. 

where e = arcsin [Z/P + h2)tl. 

The pressure distribution along the shock front is non-uniform, as follows from (24). 
Its maximum is reached when 9 = ~ R + B  and it is given by 

Here 

and the contour geometry is determined by the single parameter a(0 < a < 1). It is 
now clear that to increase the pressure maximum, a must be taken close to unity. 
Then the hyperbola is close to a wedge with characteristic slope and its focusing 
distance h is small. This can be considered as a double focusing case. Firstly, the 
pressure a t  the contact point increases due to the contact point velocity being close 
to the sound velocity. Secondly, there is normal focusing at the point of intersection 
of all rays. To clarify this scheme it is convenient to use the ray method in the spirit 
of Lesser and start from (20). In a normal focusing apparatus a shock wave is 
generated by a circular segment which is submerged in a liquid and impacted by a 
special piezoelectric device. For this approach (20) also can be used with 

= H/Z, h = l (1  -a2)/2a, t, = Z(l +a2)/2a 

R(s) = -R ,  f(s) = 0, P J S )  = 1, t, = R. 

In  this case (20) has the form 

psw(s,  t )  = ( 1  -t/tf)-t, (26) 

where R is the radius of the circle. This focusing approach has been studied in 
connection with this medical application to kidney stone destruction (see Gronig 
1989). In our case p3,(s) is not constant and can be large when a is close to unity. 
Then, on the right-hand side of (20), not only the ratio of the shock curvature radii 
at some ‘initial’ moment and just before the focusing moment (main focusing), but 
also the ‘initial ’ pressure p,(s) (additional intensification of the shock), will be high. 
Comparison of (25) ,  (26) yields that in an energetic sense the present method can be 
more effective. 

A comparison of the loads acting on the stone under the focusing of the shock 
waves generated by the piezoelectrical device and the present one is shown in figure 
7. It is seen that these methods can be considered as opposite to each other. In the 
first case negative loads are caused by the edge effect but in our case they are caused 
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by the hole at  the top of hyperbola, which is necessary for the outflow of air between 
the liquid surface and the solid contour. 

8. Conclusion 
In this section some general remarks and open questions are collected, and some 

further results on the same subject to be published in a near future are also 
mentioned. 

We have presented an analytical description of liquid motion in the narrow zone 
just behind the shock generated by the entry of a blunt contour into an ideal weakly 
compressible liquid. In the general case the velocity field and the pressure distribution 
inside this zone are given by quadratures and depend essentially on the geometry of 
the entering body. Nevertheless, the characteristics of the flow can be presented in 
explicit form and can be analysed in detail. 

The end of the supersonic stage and the shock wave escape onto the free surface 
following it is the dramatic period in the water-entry process. The linear theory fails 
so close to the contact points. It was shown by Korobkin & Pukhnachov (1985) that 
for an accurate description of the fine flow structures in those regions the nonlinear 
transonic theory must be used. This nonlinear flow has to be matched with the 
acoustic flow given by (19) far from the contact points. An analysis of the transonic 
model and the matching condition will be published. This model is valid for convex 
entering contours. The situation for complicated bodies can be more difficult. For 
example, if a body has a point where the contour slope is the characteristic one and 
the curvature is equal to zero then the asymptotics (19) are not valid and we have 
to expect higher pressure at  this point than that given by the transonic model. 

A similar analysis for the three-dimensional case has not been done yet. 
Nevertheless, the results obtained by Shamgunov (1966) and Lesser (1981) for the 
axisymmetrical case are a good basis for further investigations. 

When the contour slope is small - only this part of the body is responsible for the 
liquid flow in the region D(t )  - capillary effects can be important. It is necessary to 
estimate their influence on the impact process for optimal construction of a double- 
focusing device. 

The role of viscous forces is not very clear. They are important for understanding 
liquid motion in the vicinities of the contact points at the supersonic stage and can 
be responsible for shock escape, and also can be important in the focusing process. 
Actually, the pressure distribution along the shock front just before the focusing 
moment is not uniform. This will lead to so great a curvature of the front that it 
cannot be considered as of Hugoniot type any more (Sichel 1963) and viscous effects 
will have to be taken into account. 

The construction and possible applications of a double-focusing device are not 
simple. Some effects neglected in the present analysis can be important. Further 
experimental and theoretical investigations in this field are welcome. 

Unfortunately, the physics of kidney stone destruction is not clear yet. It is 
possible that for optimal destruction some load scheme, which is not as simple as that 
shown in figure 7, must be used. The present approach could be very helpful in 
solving the inverse problem, when the load scheme is given and the corresponding 
geometry responsible for shock initiation has to be found. 
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